
Chapter 5 — Direct Mapped Caches 1

COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

5th
Edition

Chapter 5 - Memory

Direct-Mapped Cache
Architecture

Second
Level
Cache

(SRAM)

Review: Memory Hierarchy

Control

Datapath

Secondary
Memory
(Disk)

On-Chip Components

R
egFile

Main
Memory
(DRAM)D

ata
C

ache
Instr

C
ache

ITLB
D

TLB

Speed (%cycles): ½’s 1’s 10’s 100’s 10,000’s

Size (bytes): 100’s 10K’s M’s G’s T’s
Cost: highest lowest

n Takes advantage of the principle of locality to present
the user with as large a memory as possible in the
cheapest technology at the fastest speed.

Chapter 5 — Direct Mapped Caches 2

n Two questions to answer in hardware:

n Q1: How do we know if a data item is in the cache?

n Q2: If it is in the cache, how do we find it?

n Direct mapped method

n Each memory block is mapped to exactly one block in

the cache:

n Lots of lower level blocks must share blocks in the cache.

n How do we know which particular block is stored in a

cache location?

n Store a portion of the block address as well as the data.

n The higher-order address bits stored with the data are

called the tag.
n What if there is no data in a location?

n Valid bit: 1 = present, 0 = not present

n Initially set to 0.

Cache Basics Review

Direct-Mapped Cache With 8 Entries

Chapter 5 — Direct Mapped Caches 3

Caching: A Simple First Example

00
01
10
11

Cache
Main Memory

Tag DataValid

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Index

• 16-word main memory.
• 4-word cache.
• Two low-order bits

select the word in the
cache.

Caching: A Simple First Example

00

01
10
11

Cache
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Tag Data

Question 1: Is the data there?

Compare the cache tag to
the 2 high-order address
bits to see if the memory
block is in the cache.

Valid

Question 2: How do
we find it?

Use the 2 low-order
memory address bits
– the index – to
determine which
cache word to get.

Index

• 16-word main memory.
• 4-word cache.
• Two low-order bits

select the word in the
cache.

Main Memory

Chapter 5 — Direct Mapped Caches 4

Direct Mapped Cache Example

0 1 2 3

4 3 4 15

n Start with an empty cache - all blocks initially not valid.
n Consider the following string of address requests:

0000 0001 0010 0011 0100 0011 0100 1111

00 Mem(0) 00 Mem(0)
00 Mem(1)

00 Mem(0) 00 Mem(0)
00 Mem(1)
00 Mem(2)

miss miss miss miss

miss misshit hit

00 Mem(0)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 Mem(4)
00 Mem(1)
00 Mem(2)
00 Mem(3)

01 4

11 15

00 Mem(1)
00 Mem(2)

00 Mem(3)

§ 8 requests, 6 misses

n One word blocks, cache size = 1K words (or 4KB)

MIPS Direct Mapped Cache Example

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

20

Data

32

Hit

Chapter 5 — Direct Mapped Caches 5

Taking Advantage of Spatial Locality

0

n Start with an empty cache - all blocks initially not valid.
n Let cache block hold more than one word.

0000 0001 0010 0011 0100 0011 0100 1111

1 2

3 4 3

4 15

00 Mem(1) Mem(0)

miss
00 Mem(1) Mem(0)

hit

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

miss

hit

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

miss

00 Mem(3) Mem(2)
00 Mem(1) Mem(0)

01 5 4
hit

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

hit

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

00 Mem(3) Mem(2)
01 Mem(5) Mem(4)

miss

11 15 14

§ 8 requests, 4 misses

Multiword Block Direct Mapped Cache

8
Index

DataIndex TagValid
0
1
2
.
.
.

253
254
255

31 30 . . . 13 12 11 . . . 4 3 2 1 0
Byte
offset

20

20Tag

Hit Data

32

Block offset

n Four words/block, cache size = 1K words

Chapter 5 — Direct Mapped Caches 6

Example: Intrinsity FastMATH

Miss Rate vs Block Size vs Cache Size

0

5

10

16 32 64 128 256

M
is

s
ra

te
 (%

)

Block size (bytes)

8 KB
16 KB
64 KB
256 KB

n Miss rate goes up if the block size becomes a
significant fraction of the cache size because the
number of blocks that can be held in the same size
cache is smaller.

Chapter 5 — Direct Mapped Caches 7

Block Size Considerations
n Larger blocks should reduce miss rate:

n Due to spatial locality.
n But in a fixed-sized cache:

n Larger blocks Þ fewer of them
n More competition Þ increased miss rate.

n Larger blocks mean larger miss penalty:
n Can override the benefit of reduced miss rate.

n Trick is to find the “Sweet Spot”.

Sources of Cache Misses
n Compulsory (cold start, process migration):

n First access to a block, “cold” fact of life, not a whole lot you
can do about it. If you are going to run “millions” of instructions,
compulsory misses are insignificant.

n Capacity:
n Cache cannot contain all blocks accessed by the program.

n Solution: increase cache size (may increase access time).

n Conflict (collision):
n Multiple memory locations mapped to the same cache location.

n Solution 1: increase cache size.
n Solution 2: increase associativity (may increase access time).

n Associativity covered in next presentation.

Chapter 5 — Direct Mapped Caches 8

n Read hits (I$ and D$)

n This is what we want!

n Write hits (D$ only)

n Require the cache and memory to be consistent:
n Always write the data into both the cache block and the next

level in the memory hierarchy (write-through).

n Writes run at the speed of the next level in the memory

hierarchy – slow – or can use a write buffer and stall only if

the write buffer is full.

n Allow cache and memory to be inconsistent:
n Write the data only into the cache block (write-back the cache

block to the next level in the memory hierarchy when that

cache block is “evicted”).

n Need a dirty bit for each cache block to tell if it needs to be

written back to memory when it is evicted – can use a write
buffer to help buffer write-backs of dirty blocks.

Handling Cache Hits

Handling Cache Misses (Single Word Blocks)
n Read misses (I$ and D$)

n Stall the pipeline, fetch the block from the next level in the
memory hierarchy, install it in the cache and send the requested
word to the processor, then let the pipeline resume.

n Write misses – 3 approaches – (D$ only)
1. Stall the pipeline, fetch the block from next level in the memory

hierarchy, install it in the cache (which may involve having to evict
a dirty block if using a write-back cache), write the word from the
processor to the cache, then let the pipeline resume.

2. Write allocate – data at the missed-write location is loaded to
cache, followed by a write-hit operation. In this approach, write
misses are similar to read misses.

3. No-write allocate – skip the cache write (but must invalidate that
cache block since it will now hold stale data) and just write the
word to the write buffer (and eventually to the next memory level),
no need to stall if the write buffer isn’t full.

Chapter 5 — Direct Mapped Caches 9

Multiword Block Considerations
n Read misses (I$ and D$)

n Processed the same as for single word blocks – a miss returns
the entire block from memory.

n Miss penalty grows as block size grows:
n Early restart – processor resumes execution as soon as the

requested word of the block is returned.
n Requested word first – requested word is transferred from

the memory to the cache (and processor) first.
n Non-blocking cache – allows the processor to continue to

access the cache while the cache is handling an earlier miss.
n Write misses (D$)

n If using write-allocate must first fetch the block from memory
and then write the word to the block.

Measuring Cache Performance

n Assuming cache hit costs are included as part of the
normal CPU execution cycle, then

CPU time = IC × CPI × CC
= IC × (CPIideal + Memory-stall cycles) × CC

n Memory-stall cycles come from cache misses (a sum of
read-stalls and write-stalls)

Read-stall cycles = reads/program × read miss rate
× read miss penalty

Write-stall cycles = (writes/program × write miss rate
× write miss penalty) + write buffer stalls

Chapter 5 — Direct Mapped Caches 10

Impacts of Cache Performance
n Relative cache penalty increases as processor performance

improves (faster clock rate and/or lower CPI):

n The memory speed is unlikely to improve as fast as processor
cycle time. When calculating CPIstall, the cache miss penalty is
measured in processor clock cycles needed to handle a miss.

n The lower the CPIideal, the more pronounced the impact of stalls.

n A processor with a CPIideal of 2, a 100 cycle miss penalty, 36%
load/store instr’s, and 2% I$ and 4% D$ miss rates:

Memory-stall cycles = 2% × 100 + 36% × 4% × 100 = 3.44

So CPIstalls = 2 + 3.44 = 5.44
n What if the CPIideal is reduced to 1? 0.5? 0.25?

n What if the D$ miss rate went up 5%? 6%?

n What if the processor clock rate is doubled (doubling the miss
penalty)?

Average Memory Access Time (AMAT)
n A larger cache will have a longer access time. An increase in

hit time will likely add another stage to the pipeline. At some
point, the increase in hit time for a larger cache will overcome
the improvement in hit rate leading to a decrease in
performance.

n Average Memory Access Time (AMAT) is the average time
to access memory considering both hits and misses:

AMAT = Time for a hit + Miss rate x Miss penalty

n Example:
n CPU with 1ns clock, hit time = 1 cycle, miss penalty = 20

cycles, I-cache miss rate = 5%
n AMAT = 1 + 0.05 × 20 = 2 cycles

Chapter 5 — Direct Mapped Caches 11

Reducing Cache Miss Rates #1
Allow more flexible block placement

n In a direct-mapped cache a memory block maps to
exactly one cache block.

n At the other extreme, we could allow a memory block to
be mapped to any cache block – this is known as a
fully associative cache.

n A compromise is to divide the cache into sets, each of
which consists of n “ways” (n-way set associative). A
memory block maps to a unique set (specified by the
index field) and can be placed any where in that set (so
there are n choices).

Performance Summary
n When CPU performance increases:

n Miss penalty becomes more significant.
n Decreasing base CPI:

n Greater proportion of time spent on memory stalls.
n Increasing clock rate:

n Memory stalls account for more CPU cycles.
n Can’t neglect cache behavior when evaluating system

performance.

